A gas compressor is a mechanical device that increases the pressure of a gas by reducing its volume.
Compressors are similar to pumps: both increase the pressure on a fluid and both can transport the fluid through a pipe. As gases are compressible, the compressor also reduces the volume of a gas. Liquids are relatively incompressible, so the main action of a pump is to transport liquids.
Compressors are similar to pumps: both increase the pressure on a fluid and both can transport the fluid through a pipe. As gases are compressible, the compressor also reduces the volume of a gas. Liquids are relatively incompressible, so the main action of a pump is to transport liquids.
Contents
1 Types of compressors
1.1 Centrifugal compressors
1.2 Diagonal or mixed-flow compressors
1.3 Axial-flow compressors
1.4 Reciprocating compressors
1.5 Rotary screw compressors
1.6 Rotary vane compressors
1.7 Scroll compressors
1.8 Diaphragm compressors
2 Temperature
3 Staged compression
4 Prime movers
5 Applications
Types of compressors
The main types of gas compressors are illustrated and discussed below:
Centrifugal compressors
Main article: Centrifugal compressor
Centrifugal compressors use a rotating disk or impeller in a shaped housing to force the gas to the rim of the impeller, increasing the velocity of the gas. A diffuser (divergent duct) section converts the velocity energy to pressure energy. They are primarily used for continuous, stationary service in industries such as oil refineries, chemical and petrochemical plants and natural gas processing plants.[1][2][3] Their application can be from 100 hp (75 kW) to thousands of horsepower. With multiple staging, they can achieve extremely high output pressures greater than 10,000 psi (69 MPa).
Many large snow-making operations (like ski resorts) use this type of compressor. They are also used in internal combustion engines as superchargers and turbochargers. Centrifugal compressors are used in small gas turbine engines or as the final compression stage of medium sized gas turbines.
1.1 Centrifugal compressors
1.2 Diagonal or mixed-flow compressors
1.3 Axial-flow compressors
1.4 Reciprocating compressors
1.5 Rotary screw compressors
1.6 Rotary vane compressors
1.7 Scroll compressors
1.8 Diaphragm compressors
2 Temperature
3 Staged compression
4 Prime movers
5 Applications
Types of compressors
The main types of gas compressors are illustrated and discussed below:
Centrifugal compressors
Main article: Centrifugal compressor
Centrifugal compressors use a rotating disk or impeller in a shaped housing to force the gas to the rim of the impeller, increasing the velocity of the gas. A diffuser (divergent duct) section converts the velocity energy to pressure energy. They are primarily used for continuous, stationary service in industries such as oil refineries, chemical and petrochemical plants and natural gas processing plants.[1][2][3] Their application can be from 100 hp (75 kW) to thousands of horsepower. With multiple staging, they can achieve extremely high output pressures greater than 10,000 psi (69 MPa).
Many large snow-making operations (like ski resorts) use this type of compressor. They are also used in internal combustion engines as superchargers and turbochargers. Centrifugal compressors are used in small gas turbine engines or as the final compression stage of medium sized gas turbines.
Diagonal or mixed-flow compressors
Main article: Diagonal or mixed-flow compressor
Diagonal or mixed-flow compressors are similar to centrifugal compressors, but have a radial and axial velocity component at the exit from the rotor. The diffuser is often used to turn diagonal flow to the axial direction. The diagonal compressor has a lower diameter diffuser than the equivalent centrifugal compressor.
Axial-flow compressors
Main article: Diagonal or mixed-flow compressor
Diagonal or mixed-flow compressors are similar to centrifugal compressors, but have a radial and axial velocity component at the exit from the rotor. The diffuser is often used to turn diagonal flow to the axial direction. The diagonal compressor has a lower diameter diffuser than the equivalent centrifugal compressor.
Axial-flow compressors
Axial-flow compressors are dynamic rotating compressors that use arrays of fan-like aerofoils to progressively compress the working fluid. They are used where there is a requirement for a high flow rate or a compact design.
The arrays of aerofoils are set in rows, usually as pairs: one rotating and one stationary. The rotating aerofoils, also known as blades or rotors, accelerate the fluid. The stationary aerofoils, also known as a stators or vanes, turn and decelerate the fluid; preparing and redirecting the flow for the rotor blades of the next stage.[1] Axial compressors are almost always multi-staged, with the cross-sectional area of the gas passage diminishing along the compressor to maintain an optimum axial Mach number. Beyond about 5 stages or a 4:1 design pressure ratio, variable geometry is normally used to improve operation.
Axial compressors can have high efficiencies; around 90% polytropic at their design conditions. However, they are relatively expensive, requiring a large number of components, tight tolerances and high quality materials. Axial-flow compressors can be found in medium to large gas turbine engines, in natural gas pumping stations, and within certain chemical plants.
The arrays of aerofoils are set in rows, usually as pairs: one rotating and one stationary. The rotating aerofoils, also known as blades or rotors, accelerate the fluid. The stationary aerofoils, also known as a stators or vanes, turn and decelerate the fluid; preparing and redirecting the flow for the rotor blades of the next stage.[1] Axial compressors are almost always multi-staged, with the cross-sectional area of the gas passage diminishing along the compressor to maintain an optimum axial Mach number. Beyond about 5 stages or a 4:1 design pressure ratio, variable geometry is normally used to improve operation.
Axial compressors can have high efficiencies; around 90% polytropic at their design conditions. However, they are relatively expensive, requiring a large number of components, tight tolerances and high quality materials. Axial-flow compressors can be found in medium to large gas turbine engines, in natural gas pumping stations, and within certain chemical plants.
No comments:
Post a Comment