Friday, March 27, 2009

f16


Air Combat Fighter competition
Three factors would converge to turn the LWF into a serious acquisition program. First, four North Atlantic Treaty Organization (NATO) allies of the U.S. – Belgium, Denmark, the Netherlands, and Norway – were looking to replace their F-104G fighter-bomber variants of the F-104 Starfighter interceptor; furthermore, they were seeking an aircraft that their own aerospace industries could manufacture under license, as they had the F-104G. In early 1974, they reached an agreement with the U.S. that if the USAF placed orders for the aircraft winning the LWF flyoff, they would consider ordering it as well. Secondly, while the USAF was not particularly interested in a complementary air superiority fighter, it did need to begin replacing its F-105 Thunderchief fighter-bombers. Third, the U.S. Congress was seeking to achieve greater commonality in fighter procurements by the Air Force and Navy. The Congress, in August 1974, redirected funds for the Navy’s VFAX program to a new Navy Air Combat Fighter (NACF) program that would essentially be a navalized fighter-bomber variant of the LWF. These requirements meshed relatively well, but the timing of the procurement was driven by the timeframe needs of the four allies, who had formed a “Multinational Fighter Program Group” (MFPG) and were pressing for a U.S. decision by December 1974. The U.S. Air Force had planned to announce the LWF winner in May 1975, but this decision was advanced to the beginning of the year, and testing was accelerated. To reflect this new, more serious intent to procure a new aircraft, along with its reorientation toward a fighter-bomber design, the LWF program was rolled into a new Air Combat Fighter (ACF) competition in an announcement by U.S. Secretary of Defense James R. Schlesinger in April 1974. Schlesinger also made it clear that any ACF order would be for aircraft in addition to the F-15, which essentially ended opposition to the LWF.[20][21][22]

ACF also raised the stakes for GD and Northrop because it brought in further competitors intent on securing the lucrative order that was touted at the time as “the arms deal of the century”. These were Dassault-Breguet’s Mirage F1M-53, the SEPECAT Jaguar, and a proposed derivative of the Saab Viggen styled the “Saab 37E Eurofighter” (which is not to be confused with the later and unrelated Eurofighter Typhoon). Northrop also offered another design, the P-530 Cobra, which looked very similar to its YF-17. The Jaguar and Cobra were dropped by the MFPG early on, leaving two European and the two U.S. LWF designs as candidates. On 11 September 1974, the U.S. Air Force confirmed firm plans to place an order for of the winning ACF design sufficient to equip five tactical fighter wings. On 13 January 1975, Secretary of the Air Force John L. McLucas announced that the YF-16 had been selected as the winner of the ACF competition.[23]

The chief reasons given by the Secretary for the decision were the YF-16’s lower operating costs; greater range; and maneuver performance that was “significantly better” than that of the YF-17, especially at near-supersonic and supersonic speeds. The flight test program revealed that the YF-16 had superior acceleration, climb rates, endurance, and (except around Mach 0.7) turn rates. Another advantage was the fact that the YF-16 – unlike the YF-17 – employed the Pratt & Whitney F100 turbofan engine, which was the same powerplant used by the F-15; such commonality would lower the unit costs of the engines for both programs.[22][24]

Shortly after selection of the YF-16, Secretary McLucas revealed that the USAF planned to order at least 650 and up to 1400 of the production version of the aircraft. The U.S. Air Force initially ordered 15 “Full-Scale Development” (FSD) aircraft (11 single-seat and 4 two-seat models) for its flight test program, but this would be reduced to 8 (6 F-16A and 2 F-16B). The Navy, however, announced on 2 May 1975, that it had decided not to buy the navalized F-16; instead, it would develop an aircraft derived from the YF-17, which would eventually become the McDonnell Douglas F/A-18 Hornet.[25]


Moving into production
Manufacture of the FSD F-16s got underway at General Dynamics’ Fort Worth, Texas plant in late 1975, with the first example, an F-16A, being rolled out on 20 October 1976, followed by its first flight on 8 December. The initial two-seat model achieved its first flight on 8 August 1977. The initial production-standard F-16A flew for the first time on 7 August 1978 and its delivery was accepted by the USAF on 6 January 1979. The F-16 was given its formal nickname of “Fighting Falcon” on 21 July 1980, and it entered USAF operational service with the 388th Tactical Fighter Wing at Hill AFB on 1 October 1980.[26]


A USAF F-16C of the Colorado Air National Guard (COANG) disengages from a refueling boom (fuel port is still open) over Canada.On 7 June 1975, the four European partners, now known as the European Participation Group, signed up for 348 aircraft at the Paris Air Show. This was split among the European Participation Air Forces (EPAF) as 116 for Belgium, 58 for Denmark, 102 for the Netherlands, and 72 for Norway. These would be produced on two European production lines, one in the Netherlands at Fokker’s Schiphol-Oost facility and the other at SABCA’s Gossellies plant in Belgium; production would be divided among them as 184 and 164 units, respectively. Norway’s Kongsberg Vaapenfabrikk and Denmark’s Terma A/S also manufactured parts and subassemblies for the EPAF aircraft. European co-production was officially launched on 1 July 1977 at the Fokker factory. Beginning in mid-November 1977, Fokker-produced components were shipped to Fort Worth for assembly of fuselages, which were in turn shipped back to Europe (initially to Gossellies starting in January 1978); final assembly of EPAF-bound aircraft began at the Belgian plant on 15 February 1978, with deliveries to the Belgian Air Force beginning in January 1979. The Dutch line started up in April 1978 and delivered its first aircraft to the Royal Netherlands Air Force in June 1979. In 1980 the first aircraft were delivered to the Royal Norwegian Air Force by SABCA and to the Royal Danish Air Force by Fokker.[22][27][28]

Since then, a further production line has been established at Ankara, Turkey, where Turkish Aerospace Industries (TAI) has produced 232 Block 30/40/50 F-16s under license for the Turkish Air Force during the late 1980s and 1990s, and has 30 Block 50 Advanced underway for delivery from 2010; TAI also built 46 Block 40s for Egypt in the mid-1990s. Korean Aerospace Industries opened another production line for the KF-16 program, producing 140 Block 52s from the mid-1990s to mid-2000s. If India selects the F-16IN for its Medium Multi-Role Combat Aircraft procurement, a sixth F-16 production line will be established in that nation to produce at least 108 fighters.[29]


Evolution
After selection, the YF-16 design was altered for the production F-16. The fuselage was lengthened 10.6 in (0.269 m), a larger nose radome was fitted to house the AN/APG-66 radar, wing area was increased from 280 sq ft (26 m2) to 300 sq ft (28 m2), the tailfin height was decreased slightly, the ventral fins were enlarged, two more stores stations were added, and a single side-hinged nosewheel door replaced the original double doors. These modifications increased the F-16's weight approximately 25% over that of the YF-16 prototypes.[30][31][32]

One needed change that would originally be discounted was the need for more pitch control to avoid deep stall conditions at high angles of attack. Model tests of the YF-16 conducted by the Langley Research Center revealed a potential problem, but no other laboratory was able to duplicate it. YF-16 flight tests were not sufficiently extensive to resolve the issue, but relevant flight testing on the FSD aircraft demonstrated that it was a real concern. As a result, the horizontal stabilizer areas were increased 25%; this so-called "big tail" was introduced on the Block 15 aircraft in 1981 and retrofitted later on earlier production aircraft. Besides significantly reducing (though not eliminating) the risk of deep stalls, the larger horizontal tails also improved stability and permitted faster takeoff rotation.[33][34][35]

In the 1980s, the Multinational Staged Improvement Program (MSIP) was conducted to evolve new capabilities for the F-16, mitigate risks during technology development, and ensure its currency against a changing threat environment. The program upgraded the F-16 in three stages. Altogether, the MSIP process permitted quicker introduction of new capabilities, at lower costs, and with reduced risks compared to traditional stand-alone system enhancement and modernization programs.[36] The F-16 has involved in other upgrade programs including service life extension programs in the 2000s.[37]


Design

No comments:

Post a Comment