Friday, April 24, 2009

MiG-29UB


Design

[edit] Features

MiG-29UB of Swifts aerobatic teamBecause it was developed from the same basic parameters laid out by TsAGI for the original PFI, the MiG-29 is aerodynamically broadly similar to the Sukhoi Su-27, but with some notable differences. It is built largely out of aluminium with some composite materials. It has a mid-mounted swept wing with blended leading-edge root extensions (LERXs) swept at around 40°. There are swept tailplanes and two vertical fins, mounted on booms outboard of the engines. Automatic slats are mounted on the leading edges of the wings; they are four-segment on early models and five-segment on some later variants. On the trailing edge, there are maneuvering flaps and wingtip ailerons. At the time of its deployment, it was the first Russian jet fighter in service capable of executing the Pugachev Cobra maneuver.

The MiG-29 has hydraulic controls and a SAU-451 three-axis autopilot but, unlike the Su-27, no fly-by-wire control system. Nonetheless, it is very agile, with excellent instantaneous and sustained turn performance, high alpha capability, and a general resistance to spins. The airframe is stressed for 9-g (88 m/s²) maneuvers. The controls have "soft" limiters to prevent the pilot from exceeding the g and alpha limits, but these can be disabled manually. In joint USAF-Luftwaffe exercises, the MiG-29 that the Luftwaffe fielded defeated the F-16 in close combat almost every time using its highly practical IRST sensor and helmet mounted display, together with the Vympel R-73 (NATO: AA-11 'Archer') missile


[edit] Powerplant
Main article: Klimov RD-33

Klimov RD-33 turbofan engineThe MiG-29 has two widely spaced Klimov RD-33 turbofan engines, each rated at 50.0 kN (11,240 lb) dry and 81.3 kN (18,277 lb) in afterburner. The space between the engines generates lift, thereby reducing effective wing loading, to improve maneuverability. The engines are fed through wedge-type intakes fitted under the LERXs, which have variable ramps to allow high-Mach speeds. As an adaptation to rough-field operations, the main air inlet can be closed completely and alter using the auxiliary air inlet on the upper fuselage for takeoff, landing and low-altitude flying, preventing ingestion of ground debris (foreign object damage [FOD]). Thereby the engines receive air through louvers on the LERXs which open automatically when intakes are closed. However the latest variant of the family, the MiG-35, eliminated these dorsal louvers, and adopted the mesh screens design in the main intakes, similar to those fitted to the Su-27.[3]


[edit] Range and fuel system

MiG-29 with drop tanks receiving fuel transferred from an Il-76 tankerThe internal fuel capacity of the original MiG-29B is only 4,365 liters distributed between six fuel tanks, four in the fuselage and one in each wing. As a result, the aircraft has a very limited range, in line with the original Soviet requirements for a point-defense fighter. For longer flights, this can be supplemented by a 1,500 liter (330 Imp gal, 395 USgal) centerline drop tank and, on later production batches, two 1,150 liter (365 Imp gal, 300 USgal) underwing drop tanks. In addition, a small number have been fitted with port-side inflight refueling probes, allowing much longer flight times by using a probe-and-drogue system. Some MiG-29B airframes have been upgraded to the "Fatback" configuration (MiG-29 9-13), which adds a dorsal-mounted internal fuel tank. Advanced variants, such as the MiG-35, can be fitted with a conformal fuel tank on the dorsal spine, although none of them have yet entered service

No comments:

Post a Comment